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Abstract. Tensor products of irreducible representations of the Jordanian quantum algebras
Uy (s1(2)) and Uy (su(l,1)) are considered. For both the highest weight finite-dimensional
representations a@ff, (s/(2)) and the lowest weight infinite-dimensional onedfi(su (1, 1)), it

is shown that tensor product representations are reducible and that the decomposition rules to
irreducible representations are exactly the same as those of corresponding Lie algebras.

1. Introduction

Recent works on quantum matrices in two dimensions [1,2] have introduced a new
deformation of the Lie algebrai(2) called h-deformation or Jordanian deformation

U, (s1(2)) [3]. Some algebraic aspects &f (s/(2)) have been investigated and it has been
shown thatlf, (s/(2)) is a quasitriangular Hopf algebra [4,5] and tliat(s/(2)) can be
constructed from the Drinfelf~Jimbo deformation by a contraction [6]. Furthermore, two
kinds of nonlinear relations between the generatosg (@) andif, (s/(2)) have been obtained
[7,8].

On the other hand, representation theorieg/ofs/(2)) have not been well developed
yet. What we know so far is that the finite-dimensional irreducible representations of
U, (sl(2)) are classified in exactly the same way as thosel@®). To show this, the
standard singular vector construction method was used in [9, 10]. The authors of [8] used
the nonlinear relation between the generatord (%) andif, (s1(2)), while boson realizations
of Uy, (sl(2)) were used in [11]. In [11], it was shown that decomposition rules of tensor
product representations are the samel/g®) for some low-dimensional representations.

In this paper, we consider the irreducible decomposition for tensor product
representations of Jordanian quantum algebras. Representations discussed in this paper are
the highest weight finite-dimensional ones fd{(s/(2)) and the lowest weight infinite-
dimensional ones foif,(su(1,1)). The Jordanian quantum algebid, (su(1,1)) is
introduced as an algebra being isomorphié¢#a@si(2)). It is shown that the decomposition
rules for both cases are the same as their classical counterparts. Some examples are shown
for U, (s1(2)) in order to discuss explicit expressions of Clebsch—Gordan coefficients. This
work is motivated by the fact that well developed representation theories are necessary when
we consider physical applications of algebraic objects.
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2. Un(sl(2)) and its representations

The Jordanian quantum algeldfa(si(2)) is an associative algebra with 1 generated{hy
and H. Their commutation relations are given by [3]

[H.X] = 2sinth
[H, Y] = —Y(coshhX) — (coshhX)Y (2.1)
[X,Y]=H
where# is the deformation parameter. The Casimir element is
C = %{Y(sinth) + (sinhhX)Y} + %HZ + %(sinth)z. (2.2)

In the limit of h — 0, U, (s1(2)) reduces ta/(2). The Hopf algebra structure reads
AX)=XQ1+1®X
AY)=YRd¥+eX gy
AH)=HeX+e™ o H
e(X)=e(¥Y)=€¢(H)=0 (2.3)
S(X)=-X
S(Y) = —eXye X
S(H) = —eXHe "X,

The finite-dimensional highest weight representations can be easily obtained by using

the nonlinear relation between the generators/(2) andif,(sl(2)) given in [8]. Let us
define the following elements according to [8]
Z, = 2 tanth
T h 2

hX hX
Z_= h— )Y h—
(cos 5 ) <cos 5 )

then it is not difficult to directly verify thaZ_. and H satisfy thes/(2) commutation relations

(2.4)

[H,Z, =422,  [Z..Z_]=H (2.5)

and the Casimir element yields

H (H
by using the identities proved by the mathematical induction
[H.X"] = 2nX”*1$mth
n_ownlpg o 4y yn—2SiNNAX 2.7)
[Y, X" =—nX"H—-—n(n—-1X —

wheren is a natural number. The authors of [8] regardéd, H as elements 0f/(2),
however it is more convenient to regard them as elementg, 6fi(2)) for our purpose.
Namely, their coproducts are given in termsofX), A(Y) and A(H).
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From (2.5) and (2.6), it is obvious that we can take the following as the irreducible
highest weight representations @f (s/(2))

Zoljm) = Fm)(j£tm+1)|jmE1)
H |jm) = 2m|jm)

(2.8)

and the eigenvalues of the Casimir element are
Cljm)=j(+Dljm) (2.9)

wherej is a half-integer or an integer and= —j, —j+1, - - - j, i.e. the usual representation
of s/(2). The representation matrices f&r Y can be obtained by solving (2.4) with respect
to X, Y [8].

3. Decomposition rule foriy, (sl(2))

Let us consider the irreducible decomposition of tensor product of two representations
specified by the highest weightsand j; ; {|jim1) ®|jom2) Im; = —ji, —ji+1, -+, ji, i =
1, 2}. Note that a vectofjim1) ® | jomz) is no longer an eigenvector @f(H), sinceA(H)
is not given by the classical form\(H) = H ® 14+ 1® H. The key of deriving a
decomposition rule is to construct the eigenvectora @), since if we obtain such vectors,
the decomposition rules can be derived by the same discussion as in the ca&®d ab
we shall see later.
First, we rewriteA(H) in terms of H and Z.. From (2.4)

1+ "2 hZ
X — 71 2 =1+ 22( *)

n=1

3.1
Ly 1'% o hz+ 54
e = hZ+_ ZZ
1+ 2 n=1
we obtain
A(H) = H®1+1®H+H®2Z( > 22(—*) ® H. (3.2)
n=1

Therefore, for a given vectdijimi) ® | j.mz), an eigenvector oA (H) may be written as

Ji—ma jo—m2

|(jam1) (jama)) = Z Z ™ | juma + k) ® |jamz +1) (3.3)

ml ma

where the coefficients;’;™ are required to be ;™ = 1 so as to reproduce the correct
limit of » —> 0. We further require that the elgenvalue A H) for the vector (3.3) is
2(m1 + my). Substituting (3.2) and (3.3) into

A(H) |(jimy) (jamz)) = 2(my + m2) |(jim1) (jam2)) (3.4)
then changing summing indices, we obtain

1—m1 jo—mz Ji—my jo—m3p
(Z Z(k+1) T Z Z Z( ) 2(my + k)

(o —ma— Do +ma+1—n)! kdon 5
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j (1 —my — k +n)! | V2
20y + 1) { (].1 +my + k) (1.1 my—k +n) } al’:’q}lmf)
(1—m1— (1 +mi+k—n)! ’
X |jimy + k) ® |jamz +1) = 0. (3.5)

Therefore«;'}"™* must satisfy the recurrence relation

<h> { (Ja+m2+Di(ja = ma — 1 +n)! }1/2 s
2 (jo—ma2 — DV(jo+ma+1—n)! kd=n

1
(k+ Da't™ + 2(my+ k) Y
n=1

k n . . 1/2
h (i+mi+)(jr—m1—k+n)! My
+2(m2+l)2<_2> { R i } o =0,
n=1

(1 —m1— (1 +my+k—n)!
(3.6)
Next, we rewrite recurrence relation (3.6) in a simpler form. Multiplying (3.6)3y/2

and replacingc with k — 1, then multiplying it by/(j1 + m1 + k)(j1 — m1 — k+ 1) and
subtracting from (3.6), the obtained relation reads

(k+ et} — 2 /(G my+ k) Gy = my — k+ D(@mz + 1~k + Deg{;

I noos . 1/2
h (jo+ma+D'(jo —ma—1+n)! mam
23 (2 kyalm
i Z;(2> {(jz—mz—l)!(j2+Wl2+l—n)!} 0m + e

h
+§(m1 +k =Dy (1 +mi+ k) —m1—k+ D2} = 0. 3.7

Multiplying (3.7) by h/2 and replacing! with [ — 1, then multiplying it by
V(a2 +ma 4+ 1D (jo — my — [ + 1) and subtracting from (3.7), we obtain the simpler form of
recurrence relation

h
(k+ D" = S/ Gt ma+ B G = ma = k+ D@ma + 1=k + Dy

h
+53/ Uz +ma (o = mz =1+ )(2my+ 1+ k = e

h 2
+ <2> VUi +mi+k)(r—mi—k+ Dz +ma+1)(ja —mz— 1+ 1)
X (2my +2my — 2+ k + D7, = 0. (3.8)
The solutions of recurrence relation (3.8) are given by

Qe (1) <h>"“ { (1 = m2)! (o = m2)! (1 + ma + )1 (o + mp + 1) }1/2
k 2 (a +m)! (o + ma)! (1 — my — k) (jo — mp — 1)}

> <2mllt’;_ p) (2’"1 ;k - 1) (,fT';) (3.9)

p=0

where the sum orp runs as far as all the binomial coefficients are well defined. For the
negative values of:;, the binomial coefficients are rewritten by the formula

(’?) =(—1)l<""'+ll_1>. (3.10)

Substituting (3.9) into (3.8), it can be verified that (3.9) gives the solutions of the recurrence
relation (3.8). We shall briefly sketch the calculation in the appendix, since it is somewhat
complicated.
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It has been shown that we can construct a unique ve¢ion)(j2m»)) for two given
vectors| jimy), | jomz). The rest steps of deriving a decomposition ruleligts/(2)) is the
same as in the case of(2). We follow the standard textbook of the quantum mechanics
[12].

Acting A(Zy) and A(Z_) on |(jim1)(jom2)), we obtain a series of vectors which are
eigenvectors oA (H) with eigenvalues

—2j, .. 2m—1),2m,2m +1),...,2j

wherem = mj; + m» and j denotes the highest weight. Let us 2é¢;j) the number of
irreducible representations with highest weightandn(m) the number of eigenvectors of
A(H) with eigenvalue &. The number of degenerate vectors can be written by the number
of irreducible representations

nm) =" N(j) (3.11)
Jj=Im|
therefore
N(@m) =n(m) —n(m + 1). (3.12)

Sincen(m) equals the number of paitsi1, m») satisfyingm = m1+m,, it can be expressed
as

0 for [m| > j1+ j2
nim) =13 j1+jo+1—|m| for j1+ j2 = |m| = |j1 — Jal (3.13)
2j2+1 for | ji — jo| = Im| > 0.

Substituting (3.13) into (3.12), we obtain

1 for i > S i —
Nm) = 11+_Jz lm| = |j1— Jel (3.14)
0 otherwise.
Therefore we have proved the fact that a tensor product of two highest weight
representations (highest weights gyeand j,) of U, (sl(2)) is reducible and the irreducible
decomposition rule is shown schematically

A® =1+ 2@ 1+ D& - Dl|j1— ja2l

Furthermore, each irreducible representation contained in a tensor product is multiplicity
free.

4. Some examples foidy, (sl(2))

In this section, some explicit examples of irreducible decomposition, namely some Clebsch—
Gordan coefficients, are given. To this end, the explicit formAg¥_) is needed. Note
that the explicit form ofA(Z,) is not necessary, since the vector which is annihilated by
A(X) is also annihilated by (Z,).

From (2.4),

AZ)=A <coshh2X> A(Y)A (coshhzx> . (4.2)
Using

hX hX hX . hX  hX
A <cosh2) = cosh7 ® cosh7 + smh7 ® smh7 4.2)
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and (2.9), (3.1)A(Z_) can be rewritten as

o0 n 2
AZ)=7Z_ ®Z(n+1)<h *) +Z(n+l)<—h§+> ®Z_+h(C—Ii>
n=0

n=0

®§: (ha) i (hZ+) <g>h<c-h;2>+<g>zz+zZ+

k 2
® Z(k -1 <hz+) + Z(k -1 (—%) ® (Z) Z.7_7Z.. (4.3)
k=2 k=2

We consider the cases of = j; + j2, j1+ j2 —1 andji + j» — 2. Using the result of
section 3, the eigenvectors of(H) with eigenvalues 2 are constructed.

Lm=j1+j2
|(1i0) U2J2)) = 1jaja) ® lj2j2) - (4.4)
@Qm=j+j2-1
(LD Gz = D) = Ljaja) ® ljzjo — 1) — hjry/2j2 Ljrjr) @ |jzj2) (4.5)
Gt — DGz2j2)) = Ljrjs — 1) ® |j2ja) + hjay/2j1ljij1) ® ljzj2) . (4.6)
@m=j1+j-2
GLjD) Gzjz = 2)) = |juj) ® ljzjz — 2) — hj1y/22j2 — D) |jujr) ® ljzjz — 1)

h2
+§J'1(2j1 — Dy j22j2 — 1) | j1j1) @ |j2j2) 4.7)
|Gt = D(2je— D) =j1j1— 1 ® |j2j2 -1

—h(j1 — Dv2j21jij1 — 1) ® lj2j2) + h(j2 — D/ 2j1 | jij1)

® ljzje — 1) — h*j1j2 — j1 — j2)v/jrjz | jrj1) ® |jzj2) (4.8)
[(j1j1 — 2 (J2j2)) = lj1j1 — 2) ® lj2j2) + hjo/2(2j1 — D) | jij1 — 1) ® | j2j=2)
h? .. — .. ..
+§J2(2]2 — D 12j1 — D lj1j1) @ ljajo) - (4.9)

Let us construct the representation basis with highest weight j>, j1 + j» — 1 and
J1+ j2 — 2. It is easy to verify

A(X) [(1j1) (J2j2)) =0
and

AX) [(rjr — D(G2j2)) = v2j11G1jD) (2j2))

AX) |G Gz — D) = v/2)2 1(jrjD) (2 j2)
therefore we obtain
i+ j2 Ja+Jj2) = ljij1) ® lj2j2) (4.10)
lhti2—1 jitjz—1 =—Vi2lGrih — Daio) + Vi |G Gaj = D). (4.11)
A similar calculation gives
liiti2—2 ji+j2—2) = j1(2j1— D [(jrj1)(zjz — 2))

—V2j1— D2jz — D |(jrj1 — D(jzj2 — 1)

+vj22j2 = D [(jrjr — 2)(J2j2)) - (4.12)
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Other basis vectors are obtained by actin@ _) on the highest weight vectors. They read

1
T VTR VTR,
it it =) JH?EQHMAA )(J272) + V72 () Gzjz = 1))
1

ljitij atj2—2)

_ B DY (i i i — 2
o ez =D V7@ = DG iz~ 2)
+2y/ j1j2 |Grjr — DGzj2 — D) + v j1(2j1 — D [(jij1 — 2) (j2j2)>}
1
_ B D (i i (i i — 2
Jhith-1 {\/ J12j2 — D |(j1j1) (2j2 — 2))
+(j1 — J2) 1Uj1 — D2je — D) = V j22j1 — D [(jrj1 — 2)(j2j2))} .

It is remarkable that the Clebsch—Gordan coefficients for the vedtgisi1)(jom2))
considered in this section are the same as the classical ones except for the normalization
factors, while the Clebsch—Gordan coefficients for the usual tensor pradugts ® | jomo)

are deformed. It may be a future work to investigate whether it holds for any values of
j=ji+ jo, ji+ jo—1,...,]j1 — j2| and allowedn for eachj.

lji+j2—1 ji+j2—-2)

5. Up(su(l, 1)) and its representations

We defineld, (su(1, 1)) as an algebra isomorphic td,(s/(2)). Denoting the generators of
U, (su(l,1)) by R, V, F, they are defined

R=-X V=Y F =H. (5.1)
This definition is inspired from the isomorphism betweé(®) andsu(1, 1)
KL= :FJi KO = Jo (52)

whereJ., Jo and K., Kq are generators ofl (2) andsu(1, 1) respectively. Combining the
isomorphism (5.2) and the nonlinear relation between generateigdfandif, (s1(2)) [8],
the isomorphism (5.1) is obtained.

All algebraic structures otf,(su(1,1)) can easily be derived by using (5.1). The
commutation relations are obtained from (2.1)

inhAR
(F.R] = 2sm
[F,V] =—-V(coshhiR) — (cOShhR)V (5.3)
[R,V]=—F
the Casimir element is from (2.2)
1 1 1
C' = —E{V(sinth) + (SiNhAR)V} + 21F? + 21(sinhhle)z. (5.4)

The Hopf algebra mappings féf, (su(1, 1)) are obtained from (2.3).
Let us next consider representationsiffisu(1, 1)). The strategy is the same as the
one fori4, (s1(2)). We define new elements of, (su(1, 1))

h 2
thenT. and F satisfy thesu (1, 1) commutation relations
[F, Ty] = £2T% [T,,T1=—-F (5.6)

2 hR hR hR
T, = —tanh— T_ = (coshz) 14 (cosh2> (5.5)
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and the Casimir element reads
F (F
C =— < - 1) —T,T-_. (5.7)

These are easily verified with the identities

,sinhAR
h

[V,R"l =nR"YF +nmn—-1R""

[F, R"] = 2nR"~

,sinhiR (5-8)

h
It is now clear that we can take a representation:afl, 1) as the one foffy, F. In

this paper, we concentrate on the representation called the positive discrete series [13, 14]
which is a lowest weight infinite-dimensional representation

Fliew) = 2 [k )

(5.9)
Teliep) = (u o) (nwFe£1) e £1)
and the eigenvalue of the Casimir element is given by
C'lep) =k —1) k) (5.10)
wherex can take any positive value apd= «, «+1, «+2, .... The representation matrices

for R, V can be obtained by solving (5.5) with respectRpV.

6. Decomposition rule forify, (su(1, 1))

In this section, we show that a decomposition rule of the product of two positive discrete
series ofi4, (su(1, 1)) is the same asu(1, 1). We consider a tensor product representation
of positive discrete series with the lowest weight «,. Using (5.5), the coproduct of

can be rewritten as

A(F) = F®1+1®F+F®ZZ<—}1T+> 22( ) (6.1)

n=1

For a given vectof(xiu1)(kou2)), the eigenvector oA (F) may be written

|Gerpen) (o)) = D @b |kapus + p) ® licopiz + ) . (6.2)
p,0=0

We require that the eigenvalue of(F) for the vector (6.2) is Qu1 + u2). Because of the
consistency with the limit oh — 0, we setug;"* = 1. Substituting (6.1) and (6.2) into
the relationA(F) |(k1u1) (k2t2)) = 2(iu1 + p2) [(k1p1)(k2i42)), We obtain the recurrence
relation fora/1#2

iz [ (meto+ke—Dlpeto—x)! |V
(0t o)t +2(u1+p)z<—) {(M2+G+K2— —n)!(uera—Kz—n)!}

Xy o +2(u2+0)2< )

(1 +p + k1 — D (g + p — k1) v
X o
(m1+po+r1—1—ml(us+p+Ky—n)! ’
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Repeating the same procedure as the cas#,@fl(2)), the recurrence relation (6.3) is
rewritten in the simpler form

h
(p + o)kl — 5\/(M2 +o+i2—D(uz+0o —i)ua+1+p -0,

h
oVt ot - D+ p —k)@uz+1-p+ o)y

B2
+<2> V@ +p+ra— D+ p — k1) (p2+0 + k2 — D(uz + 0 — k2)

x(uy+ 212 — 2+ p + U)Olgi’fi_l =0. (6.4)
The solutions of (6.4) are given by

h pt+o
ag.,lém = (=17 (2)

8 { (w1—r1+ )y +rk1—1+ p)'(u2—k2 + ) (U2 + ko—1 4+ o)! }1/2
(1 — k) (1 + 1 — Dz — k) (2 + k2 — 1!

" ; <2ma+_pp— p> (2u1 +p,0 — 1) <p252p> 65)

where the sum omp runs as far as all the binomial coefficients are well defined. It can be

proved that (6.5) satisfies the recurrence relation (6.4) in the same way as in the appendix.
It has been shown that we can construct a unique eigenvect(Bf with eigenvalue

2(u1 + p2) for given vectors|kyjus), |kap2). Acting A(Tw) on [(kiu1)(k2p2)), We can

construct a series of eigenvectors®fF) with eigenvalues

K,k + 1, + 1
whereu = 1 + u2 and it is clear that the lowest possible valueof{denoted byk) is
k1+k2. Let us setN (k) the number of irreducible representations with lowest weigtand
n(w) the number of eigenvectors @f(F) with eigenvalue 2. The number of degenerate
vectors can be written by the number of irreducible representation

n(w) =) N (6.6)

K<

therefore
N(u) =n(p) —n(n—1). (6.7)
Sincen(u) equals the number of pailgty, up) satisfyingu = iy + uo, it is given by

for u < 1+ k2
_ 6.8
nw) {M—Kl—Kz—i-l for u > k1 + «o. (6.8)
Substituting (6.8) into (6.7),
0 for u < x4+«
N = 6.9
() { 1 for u > rkq1 + . ( )

Therefore we have proved the fact that a tensor product of two positive discrete series
of Uy, (su(l, 1)) is reducible and the irreducible decomposition rule is given schematically
by

K1®Kky =K1+ KkoBk1+k2+1B kK1 +Kk2+2D---.

Furthermore, each irreducible representation contained in the tensor product is multiplicity
free.
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7. Conclusion

We have shown that, for both highest weight finite-dimensional representatidf$so2))
and lowest weight infinite-dimensional onesiof(su (1, 1)), tensor product representations
are reducible and the decomposition rules to irreducible representations are exactly the
same as those of the corresponding Lie algebras. We concentrate on the positive discrete
series ofif, (su(1, 1)), the same result may hold for the negative discrete series which are
highest weight infinite-dimensional representations, since the difference between positive
and negative discrete series is to use highest weight or lowest one. The Lie algebrb
has two other infinite-dimensional representations [13]. The corresponding representations
of U, (su(1, 1)) may obtain the inverse mapping of (5.5), however, tensor products of such
representations are still an open problem.

The construction of eigenvectors @f(H) and A(F) is the key of the proof. The
other steps of the proof are nothing but those for the Lie algebras. This parallelism in
the representation theories between Jordanian quantum algebras and the corresponding Lie
algebras may suggest further similarities. For example, we might be able to obtain the
Clebsch—Gordan coefficients by the same method as the classical case, Racha—Wigner type
of calculus (65, 9 j symbols, tensor operators, Wigner—Eckart's theorem etc) might be
possible for the Jordanian quantum algebras. The similarity in the representation theories
may also suggest that the Jordanian quantum algebras are applicable to various fields in
physics. These will be future works.

Appendix

In this appendix, we show that (3.9) is the solution of recurrence relation (3.8). Substituting
(3.9) into (3.8), then using the identities

B 2mi+k—p\ _ _ 2mi+k—p
@mi+1+k l)( 1_p)—<l p)( L )

(2ma+1- k+p)( 2’{”_{)) = p)(z’";)

the left-hand side of the recurrence relation (3.8), up to a factor of

(-1 <h>“’ { (o = mo)! iz = m)! o+ ma + ) Gz + ma + ) }1/2
(1 +m)! Gz +m2)!(j1 —m1 — k) (j2 — mz — D!

can be rewritten

() ()
—;<k—p)<z'nl+zli;l_p)(2"”;]{_2)(,fTi,)
—;<I—p>(M1+II€_—,,1_p)(2"112]{_2)(,{_2?2_,,)
+Z <2m1+k p><2m1—;k—1)(k2r_nzp)
Tl
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_ B o (2mitk—1-p
Zo(zml 3+ 2k +1 p)( 1, >

L 2mitk =2 2m;
P k—1-p)°

Redefiningp + 1 as p in the third and the sixth summation, the fourth and the sixth
summation can be combined. The second and the fifth summation can also be combined
by using the identity

(22) ()= (")

At this stage, the left-hand side of (3.8) reads

2my;+k—p 2mi+k—1 2mo
k
1,;( I=p >< P ><’<—P)
2mi+k—p 2my+k—2 2mo
-3 )"0
; l—p P k—p
2my+k—p 2my+k -2 2m,
_;(l_erl)(lH—P)( p-1 )(k—P>
2mi+k—p 2mi+k—2 2mo
g () () (25)
[; I—p rp—1 k—p

It is now easy to see that this always vanishes, noting that the last two summations are
combined to give

l—p p—1 k—p
p=1
This completes the proof.

Note added in proofAfter this manuscript was submitted we received a preprint [15], where the explicit formulae
for the Uy, (s1(2)) Clebsch—Gordan coefficients were obtained and a solution to the question presented at the end
of section 4 was given.
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